一、线性代数课程特点 q>f1V3
3<#4
Y[@$1{YS
考研(论坛) 数学中,线性代数课程特点比较鲜明:概念多、定理多、符号多、运算规律多、内容相互纵横交错,知识前后紧密联系。 m8#+w0p)
nQb{/ TqC'
`UGHk*DL)
在这些特点背后,考生应该充分理解概念,掌握定理的条件、结论、应用,熟悉符号意义,掌握各种运算规律、计算方法,并及时进行总结,抓联系,使学知识能融会贯通,举一反三。由于2010年考研数学大纲还未出,因此,结合2009年考试大纲,考研教育网数学辅导专家将线性代数考试重点内容及复习要点逐一列明,供广大考生参考。 ;}WdxWw4
} D{y
u+)
|-=^5q5
二、常考知识点及复习要点 dKi+~m'w
HS>Z6|uLY
$D<LND=o=
1.行列式的重点是计算,利用性质熟练准确的计算出行列式的值。 l '<gkwX
@'jC>BS8`
Em %"]B
2.矩阵中除可逆阵、伴随阵、分块阵、初等阵等重要概念外,主要也是运算,其运算分两个层次,一是矩阵的符号运算,二是具体矩阵的数值运算。 ;y
Wfb|!
){ArZjG>
[$
vAjP
例如在解矩阵方程中,首先进行矩阵的符号运算,将矩阵方程化简,然后再代入数值,算出具体的结果,矩阵的求逆(包括简单的分块阵)(或抽象的,或具体的,或用定义,或是用公式A-1=1A*,或A用初等行变换),A和A*的关系,矩阵乘积的行列式,方阵的幂等也是常考的内容之一。 ESL(Mf'
1-Sc@WXd
XN'x`%!*3#
3.关于向量,证明(或判别)向量组的线性相关(无关),线性表出等问题的关键在于深刻理解线性相关(无关)的概念及几个相关定理的掌握,并要注意推证过程中逻辑的正确性及反证法的使用。 v=RQ"iv8
uF/l,[0v
&Vd,{JU
4.向量组的极大无关组,等价向量组,向量组及矩阵的秩的概念,以及它们相互关系也是重点内容之一。用初等行变换是求向量组的极大无关组及向量组和矩阵秩的有效方法。 $&