C++内存分配与释放均由用户代码自行控制,灵活的机制有如潘多拉之盒,即让程序员有了更广的发挥 w~Vqg:'\$
<$WS~tTz
空间,也产生了代代相传的内存泄漏问题。对于新手来说,最常犯的错误就是new出一个对象而忘记释放,对于一般小应用程序来说,一点内存空间不算什么。但是当内存泄漏问题出现在需要24小时运行的平台类程序上的时候,将会使系统可用内存飞速减少,最后耗尽系统资源,导致系统崩溃。 .*.eY?,V
sH >zsc
所以学会如何防止并检查内存泄漏,是一个合格的c++程序员必须具备的能力。但是由于内存泄漏是程序运行并满足一定条件时才会发生,直接从代码中查出泄漏原因的难度较大,而且一旦内存泄漏发生在多线程程序中,从大量的代码中要靠人工找出泄漏原因,无论对新人还是老手都是一场噩梦 rUAt`ykTmN
_-9cGm v
本文介绍一种在VS2003中检查内存泄漏的方法,供各位新人老手参考,在VC6中实现需要做一些变动,详情可自行参照相关资料。 DQaE9gmC
qV/>d',
检查策略分析 ?ks.M'@
n+i=Ff
首先,假定我们需要检测一个24小时运行的平台程序的内存泄漏情况,我们无法确定具体的内存泄漏速度,但是我们可以确定该程序在一定时间内(如10分钟)泄漏的内存量是接近的,设为L(eak)。 GQQp(%T
1EWZA
考虑在10分钟的运行时间内程序新申请到的内存A(lloc),这部分内存其实包含了程序运行正常申请,并会在后续运行中进行释放的普通内存块N(ormal)和泄漏的内存L,即:A = N + L PrA(==FX/
Xkg
在后续的运行中,由于N部分不断的申请和释放,所以这部分的总量基本上是不变的,而L部分由于只申请而不释放,占用的内存总量将会越来越大。 ["4Tn0g ;
l"jYY3N|h
将这个结果放到运行时间轴上,现在我们观察程序运行中的20分钟,我们假定内存泄漏速度为dL/10分钟,时间轴如下: O}p<"3Ub
(Nv-wU
)?c,&
----------------|--------------------|-------------------|----------------------------
X>P|-n#
Tn-2 Tn-1 Tn ^5(d^N
5O
Y5b8
%/5Wj_|p
三点间隔均为10分钟,则我们有如下结论: _mwt{D2r}
KC9e{
Tn点总的内存分配量 An = N + dL * n,N为正常分配内存,dL*n为内存泄漏量的总和,而Tn-1点的内存总量则为 An-1 = N + dL*(n-1)。注意,我们这里不考虑释放的内存量,仅考虑增加的内存量。因此很明显单位时间内的内存泄漏量 dL = An - An-1。 ?)(-_N&T
#N'9
w .
生成内存Dump文件的代码实现 DH.UJ+
W8;!rFW
要完成如上的策略,我们首先需要能跟踪内存块的分配与释放情况,并且在运行时将分配情况保存到文件中,以便进行比较分析,所幸m$已经为我们提供了一整套手段,可以方便地进行内存追踪。具体实现步骤如下: B;W%P.<.
jIVD i~Ld
包含内存追踪所需库 2A:h&t/|C
\xv(&94U
在StdAfx.h中添加如下代码,注意必须定义宏_CRTDBG_MAP_ALLOC,否则后续dump文件将缺少内存块的代码位置。 G.v(2~QFd
{8`$~c
UT9u?
#ifdef _DEBUG aql8Or1[
//for memory leak check a(ITv roM/
#define _CRTDBG_MAP_ALLOC //使生成的内存dump包含内存块分配的具体代码为止 sf# px|~9
#include RVLVY:h|F
#include 4RYH^9;>K
#endif @qj]`}Gx'
|r36iUHZS
Id>4fF:o
启动内存追踪 t8rFn
D|Wlq~IpQ
上述步骤完成后,则可以在应用程序启动处添加如下代码,启动内存追踪,启动后程序将自动检测内存的分配与释放情况,并允许将结果输出。 D}j`T
cC+2%q B
`|nCnT'
//enable leak check Im@OAR4,R
_CrtSetDbgFlag( _CRTDBG_REPORT_FLAG); ={V@Y-5T
Pnm$g;`P
1?1Bz?EKF*
将结果输出指向dump文件 8N?D1;F;
o)^Wz
由于默认情况下,内存泄漏的dump内容是输出到vs的debug输出窗口,但是对于服务类程序肯定没法开着vs的debug模式来追踪内存泄漏,所以必须将dump内容的输出转到dump文件中。在程序中添加如下部分: jX(hBnGW
T?1V%!a;f
k+w Ji
HANDLE hLogFile;//声明日志文件句柄 rjO{B`sV*
hLogFile = CreateFile("./log/memleak.log", GENERIC_WRITE, FILE_SHARE_WRITE|FILE_SHARE_READ, o[fg:/5)A
NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);//创建日志文件 ( N};.DB1Y
_CrtSetReportMode(_CRT_WARN, _CRTDBG_MODE_FILE);//将warn级别的内容都输出到文件(注意dump的 &>E gKL
报告级别即为warning) d!YP{y P
_CrtSetReportFile(_CRT_WARN, hLogFile);//将日志文件设置为告警的输出文件 \IImxkE
oOU_
Nay
Hq 3V+$
保存内存Dump OE9,D:tv
}2Euz.0
完成了以上的设置,我们就可以在程序中添加如下代码,输出内存dump到指定的dump文件中: \=bKuP(it
lw.[qP
;l
ZKgi8`
_CrtMemState s1, s2, s3;//定义3个临时内存状态 Fb=uN
...... |?8nO.C~V
_CrtDumpMemoryLeaks();//Dump从程序开始运行到该时刻点,已分配而未释放的内存,即前述An DL1nD5
//以下部分非必要,仅为方便后续分析增加信息 !4'F z[RK
_CrtMemCheckpoint( &s2 ); !2l2;?jM
if ( _CrtMemDifference( &s3, &s1, &s2) ) T,1qR:58
{ +>K&zS
_CrtMemDumpStatistics( &s3 );//dump相邻时间点间的内存块变化 i/1$uQ
//for next compare >7%T%2N
_CrtMemCheckpoint( &s1 ); G8klWZAJ
} f:<BUqa
time_t now = time(0); f17E2^(I(}
struct tm *nowTime = localtime(&now); }^ ,D~b-nB
_RPT4(_CRT_WARN,"%02d %02d:%02d:%02d snapshot dump.\n", 31a lQ\TH
nowTime->tm_mday, nowTime->tm_hour,nowTime->tm_min,nowTime->tm_sec);//输出该次dump时间 r]Wt! oHm5
n$r`s`}
#S'uqP!
以上代码最好放在一个函数中由定时器定期触发,或者手动snapshot生成相等时间段的内存dump。 Br7q.
d(d<@cB9
dump文件内容示例如下: /bB4ec8!
KvPCb%!ZP
orH6R8P]
Detected memory leaks! >(S)aug$1
Dumping objects -> D5snaGss9a
{20575884} normal block at 0x05C4C490, 87 bytes long. '5De1K.\`
Data: 02 00 1D 90 84 9F A6 89 00 00 00 00 00 00 00 00 Q47R`"
... J
3C^tV
d:\xxxxx\xxxworker.cpp(903) : {20575705} normal block at 0x05D3EF90, 256 bytes long. RO,TNS~
Data: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 7Y(Dg`8G
... \&;y:4&l8
Object dump complete. xd^Pkf
0 bytes in 0 Free Blocks. W/>a 1
215968 bytes in 876 Normal Blocks. K4<"XF1A:
0 bytes in 0 CRT Blocks. $DIy?kZ
0 bytes in 0 Ignore Blocks. aSX4~UYB=
0 bytes in 0 Client Blocks. i#t-p\Tcz
Largest number used: 220044 bytes. )Ak#1w&q
Total allocations: 7838322 bytes. Babzrt-
10 16:29:14 snapshot dump. n+ebi>}P
^Z?m)qxvB
C|TQf8
上面红色部分即为用户代码中分配而未释放的内存块位置。 >Wt@O\k
9$;5J
解析Dump文件 AG=PbY9
0P9\; !Y
前面我们已经通过dump文件获取到各时刻点的内存dump,根据前面的分析策略,我们只需要将第n次dump的内存块分配情况An,与第n-1次dump内存块分配情况An-1作比较,即可定位到发生内存泄漏的位置。由于dump文件一般容量巨大,*人工进行对比几乎不可能,所以仅介绍比较的思路,各位需要自行制作小工具进行处理。 dR1IndZl
;Jg$C~3tf
1、提取两个相邻时间点的dump文件D1和D2,设D1是D2之前的dump \2 N;VE
%bN{FKNN
2、各自提取dump文件中用户代码分配的内存块(即有明确代码位置,而且为normal block的内存块),分别根据内存块ID(如“d:\xxxxx\xxxworker.cpp(903) : {20575705}”红色部分)保存在列表L1和L2 LkS tU)
|<,qnf| -
3、遍历列表L2,记录内存块ID没有在L1中出现过的内存块,这些内存块即为可能泄漏的内存 vu\W5M
'kt6%d2
4、根据3的结果,按照内存的分配代码位置,统计各处代码泄漏的内存块个数,降序排列,分配次数越多的代码,内存泄漏可能性越大。